The commutativity in prime Gamma rings with left derivation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some commutativity theorems for $*$-prime rings with $(sigma,tau)$-derivation

‎Let $R$ be a $*$-prime ring with center‎ ‎$Z(R)$‎, ‎$d$ a non-zero $(sigma,tau)$-derivation of $R$ with associated‎ ‎automorphisms $sigma$ and $tau$ of $R$‎, ‎such that $sigma$‎, ‎$tau$‎ ‎and $d$ commute with $'*'$‎. ‎Suppose that $U$ is an ideal of $R$ such that $U^*=U$‎, ‎and $C_{sigma,tau}={cin‎ ‎R~|~csigma(x)=tau(x)c~mbox{for~all}~xin R}.$ In the present paper‎, ‎it is shown that if charac...

متن کامل

some commutativity theorems for $*$-prime rings with $(sigma,tau)$-derivation

‎let $r$ be a $*$-prime ring with center‎ ‎$z(r)$‎, ‎$d$ a non-zero $(sigma,tau)$-derivation of $r$ with associated‎ ‎automorphisms $sigma$ and $tau$ of $r$‎, ‎such that $sigma$‎, ‎$tau$‎ ‎and $d$ commute with $'*'$‎. ‎suppose that $u$ is an ideal of $r$ such that $u^*=u$‎, ‎and $c_{sigma,tau}={cin‎ ‎r~|~csigma(x)=tau(x)c~mbox{for~all}~xin r}.$ in the present paper‎, ‎it is shown that...

متن کامل

On derivations and commutativity in prime rings

Let R be a prime ring of characteristic different from 2, d a nonzero derivation of R, and I a nonzero right ideal of R such that [[d(x), x], [d(y), y]] = 0, for all x, y ∈ I. We prove that if [I, I]I ≠ 0, then d(I)I = 0. 1. Introduction. Let R be a prime ring and d a nonzero derivation of R. Define [x, y] 1 = [x, y] = xy − yx, then an Engel condition is a polynomial [x, y] k = [[x, y] k−1 ,y]

متن کامل

Commutativity of Prime Γ-near Rings with Γ− (σ, Τ)-derivation

Let N be a prime Γ-near ring with multiplicative center Z. Let σ and τ be automorphisms of N and δ be a Γ− (σ, τ)-derivation of N such that N is 2-torsion free. In this paper the following results are proved: (1) If σγδ = δγσ and τγδ = δγτ and δ(N) ⊆ Z, or [δ(x), δ(y)]γ = 0, for all x, y ∈ N and γ ∈ Γ, then N is a commutative ring. (2) If δ1 is a Γ-derivation, δ2 is a Γ − (σ, τ) derivation of N...

متن کامل

Two Torsion Free Prime Gamma Rings With Jordan Left Derivations

Let M be a 2-torsion free prime Γ-ring and X a nonzero faithful and prime ΓM -module. Then the existence of a nonzero Jordan left derivation d : M → X satisfying some appropriate conditions implies M is commutative. M is also commutative in the case that d : M → M is a derivation along with some suitable assumptions. AMS (MOS) Subject Classification Codes: 03E72, 54A40, 54B15

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Mathematical Forum

سال: 2007

ISSN: 1314-7536

DOI: 10.12988/imf.2007.07008